0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0
10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 0
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 1
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
6 0 1 1 0 1
11 1 0 1 1 1
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 1
Gruppe 1
2 0 0 1 0 1
4 0 1 0 0 1
Gruppe 2
3 0 0 1 1 1
6 0 1 1 0 1
Gruppe 3
11 1 0 1 1 1
13 1 1 0 1 1
14 1 1 1 0 1
Gruppe 4
15 1 1 1 1 1
2;3 0 0 1 -
2;6 0 - 1 0
4;6 0 1 - 0
3;11 - 0 1 1
6;14 - 1 1 0
11;15 1 - 1 1
13;15 1 1 - 1
14;15 1 1 1 -
2;3 0 0 1 -
14;15 1 1 1 -
4;6 0 1 - 0
13;15 1 1 - 1
2;6 0 - 1 0
11;15 1 - 1 1
3;11 - 0 1 1
6;14 - 1 1 0
2 3 4 6 11 13 14 15
2;3 * *
14;15 * *
4;6 * *
13;15 * *
2;6 * *
11;15 * *
3;11 * *
6;14 * *
2 3 4 6 11 13 14 15
2;3 * *
14;15 * *
4;6 * *
13;15 * *
11;15 * *
2;3 0 0 1 -
14;15 1 1 1 -
4;6 0 1 - 0
13;15 1 1 - 1
11;15 1 - 1 1
(not x3 and not not x2 and x1) or (x3 and x2 and x1) or (not x3 and x2 and not x0) or (x3 and x2 and x0) or (x3 and x1 and x0)
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 0
10 1 0 1 0 1
11 1 0 1 1 0
12 1 1 0 0 0
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 1
1 0 0 0 1 1
2 0 0 1 0 1
6 0 1 1 0 1
8 1 0 0 0 1
10 1 0 1 0 1
14 1 1 1 0 1
15 1 1 1 1 1
Gruppe 1
1 0 0 0 1 1
2 0 0 1 0 1
8 1 0 0 0 1
Gruppe 2
6 0 1 1 0 1
10 1 0 1 0 1
Gruppe 3
14 1 1 1 0 1
Gruppe 4:
15 1 1 1 1 1
1 0 0 0 1
2;6 0 - 1 0
2;10 - 0 1 0
8;10 1 0 - 0
6;14 - 1 1 0
10;14 1 - 1 0
14;15 1 1 1 -
1 0 0 0 1
8;10 1 0 - 0
2;6 0 - 1 0
10;14 1 - 1 0
2;10 - 0 1 0
6;14 - 1 1 0
14;15 1 1 1 -
2;6;10;14 - - 1 0
2;10;6;14 - - 1 0
1 0 0 0 1
8;10 1 0 - 0
14;15 1 1 1 -
2;10;6;14 - - 1 0
1 2 6 8 10 14 15
1 *
8;10 * *
14;15 * *
2;10;6;14 * * * *
0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 0 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 1 13 1 1 0 1 0 14 1 1 1 0 0 15 1 1 1 1 1 1 0 0 0 1 1 2 0 0 1 0 1 8 1 0 0 0 1 12 1 1 0 0 1 15 1 1 1 1 1 Gruppe 1: 1 0 0 0 1 1 2 0 0 1 0 1 8 1 0 0 0 1 Gruppe 2: 12 1 1 0 0 1 Gruppe 4: 15 1 1 1 1 1 1 0 0 0 1 2 0 0 1 0 8;12 1 - 0 0 15 1 1 1 1 y = (not x3 and not x2 and not x1 and x0) or (not x3 and not x2 and x1 and not x0) or (x3 and not x1 and not x0) or (x3 and x2 and x1 and x0)
0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 0 4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 0 8 1 0 0 0 0 9 1 0 0 1 0 10 1 0 1 0 1 11 1 0 1 1 0 12 1 1 0 0 1 13 1 1 0 1 0 14 1 1 1 0 0 15 1 1 1 1 1 1 0 0 0 1 1 4 0 1 0 0 1 10 1 0 1 0 1 12 1 1 0 0 1 15 1 1 1 1 1 Gruppe 1 1 0 0 0 1 1 4 0 1 0 0 1 Gruppe 2 10 1 0 1 0 1 12 1 1 0 0 1 Gruppe 4 15 1 1 1 1 1 10 1 0 1 0 15 1 1 1 1 1 0 0 0 1 4;12 - 1 0 0 x = (d and not c and b and a) or (d and c and b and a) or (not d and not c and not b and a) or (c and not b and not a)
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 0
9 1 0 0 1 1
10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 0
0 0 0 0 0 1
2 0 0 1 0 1
3 0 0 1 1 1
7 0 1 1 1 1
9 1 0 0 1 1
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
Gruppe 0
0 0 0 0 0 1
Gruppe 1
2 0 0 1 0 1
Gruppe 2
3 0 0 1 1 1
9 1 0 0 1 1
12 1 1 0 0 1
Gruppe 2
7 0 1 1 1 1
11 1 0 1 1 1
13 1 1 0 1 1
0;2 0 0 - 0
2;3 0 0 1 -
3;7 0 - 1 1
3;11 - 0 1 1
9;11 1 0 - 1
9;13 1 - 0 1
12;13 1 1 0 -
3;11 - 0 1 1
9;13 1 - 0 1
3;7 0 - 1 1
9;11 1 0 - 1
0;2 0 0 - 0
2;3 0 0 1 -
12;13 1 1 0 -
9 2 3 12 7 11 13 0
3;11 * *
9;13 * *
3;7 * *
9;11 * *
0;2 * *
2;3 * *
12;13 * *
9 2 3 12 7 11 13 0
3;11 * *
9;13 * *
3;7 * *
0;2 * *
12;13 * *
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 0
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 0
1 0 0 0 1 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 1
13 1 1 0 1 1
Gruppe 1
1 0 0 0 1 1
8 1 0 0 0 1
Gruppe 2
5 0 1 0 1 1
6 0 1 1 0 1
9 1 0 0 1 1
10 1 0 1 0 1
Gruppe 3
7 0 1 1 1 1
11 1 0 1 1 1
13 1 1 0 1 1
1;5 0 - 0 1
1;9 - 0 0 1
8;9 1 0 0 -
8;10 1 0 - 0
5;7 0 1 - 1
5;13 - 1 0 1
6;7 0 1 1 -
9;11 1 0 - 1
9;13 1 - 0 1
10:11 1 0 1 -
6;7 0 1 1 -
10:11 1 0 1 -
8;9 1 0 0 -
9;11 1 0 - 1
5;7 0 1 - 1
8;10 1 0 - 0
9;13 1 - 0 1
1;5 0 - 0 1
1;9 - 0 0 1
5;13 - 1 0 1
6;7 0 1 1 -
10;11;8;9 1 0 - -
5;7 0 1 - 1
9;11;8;10 1 0 - -
9;13;1;5 - - 0 1
1;9;5;13 - - 0 1
6;7 0 1 1 -
5;7 0 1 - 1
9;11;8;10 1 0 - -
1;9;5;13 - - 0 1
1 5 6 7 8 9 10 11 13
6;7 * *
5;7 * *
9;11;8;10 * * * *
1;9;5;13 * * * *
1 5 6 7 8 9 10 11 13
6;7 * *
9;11;8;10 * * * *
1;9;5;13 * * * *
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 0
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 0
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 1
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 1
5 0 1 0 1 1
7 0 1 1 1 1
8 1 0 0 0 1
10 1 0 1 0 1
11 1 0 1 1 1
14 1 1 1 0 1
15 1 1 1 1 1
Gruppe 0
0 0 0 0 0 1
Gruppe 1
1 0 0 0 1 1
2 0 0 1 0 1
8 1 0 0 0 1
Gruppe 2
5 0 1 0 1 1
10 1 0 1 0 1
Gruppe 3
7 0 1 1 1 1
11 1 0 1 1 1
14 1 1 1 0 1
Gruppe 4
15 1 1 1 1 1
0;1 0 0 0 -
0;2 0 0 - 0
0;8 - 0 0 0
1;5 0 - 0 1
2;10 - 0 1 0
8;10 1 0 - 0
5;7 0 1 - 1
10;11 1 0 1 -
10;14 1 - 1 0
7;15 - 1 1 1
11;15 1 - 1 1
14;15 1 1 1 -
7;15 - 1 1 1
0;8 - 0 0 0
2;10 - 0 1 0
1;5 0 - 0 1
11;15 1 - 1 1
10;14 1 - 1 0
8;10 1 0 - 0
5;7 0 1 - 1
0;2 0 0 - 0
10;11 1 0 1 -
14;15 1 1 1 -
0;1 0 0 0 -
7;15 - 1 1 1
0;8 - 0 0 0
2;10 - 0 1 0
1;5 0 - 0 1
11;15 1 - 1 1
10;14 1 - 1 0
11;15;10;14 1 - 1 -
0;2 0 0 - 0
8;10 1 0 - 0
5;7 0 1 - 1
0;2;8;10 - 0 - 0
0;1 0 0 0 -
10;11 1 0 1 -
14;15 1 1 1 -
0 1 2 5 7 8 10 11 14 15
7;15 * *
0;8 * *
2;10 * *
1;5 * *
11;15;10;14 * * * *
0;2;8;10 * * * *
5;7 * *
0;1 * *
10;11 * *
14;15 * *
0 1 2 5 7 8 10 11 14 15
7;15 * *
0;8 * *
2;10 * *
1;5 * *
11;15;10;14 * * * *
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 0
10 1 0 1 0 0
11 1 0 1 1 0
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
8 1 0 0 0 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 1
Gruppe 1
2 0 0 1 0 1
4 0 1 0 0 1
8 1 0 0 0 1
Gruppe 2
3 0 0 1 1 1
5 0 1 0 1 1
12 1 1 0 0 1
Gruppe 3
13 1 1 0 1 1
14 1 1 1 0 1
2;3 0 0 1 -
4;5 0 1 0 -
4;12 - 1 0 0
8;12 1 - 0 0
5;13 - 1 0 1
12;14 1 1 - 0
4;12 - 1 0 0
5;13 - 1 0 1
8;12 1 - 0 0
12;14 1 1 - 0
2;3 0 0 1 -
4;5 0 1 0 -
4;12;5;13 - 1 0 -
8;12 1 - 0 0
12;14 1 1 - 0
2;3 0 0 1 -
4;5 0 1 0 -
2 3 4 5 8 12 13 14
4;12;5;13 * * * *
8;12 * *
12;14 * *
2;3 * *
4;5 * *
2 3 4 5 8 12 13 14
4;12;5;13 * * * *
8;12 * *
12;14 * *
2;3 * *
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 0
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 0
1 0 0 0 1 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
12 1 1 0 0 1
13 1 1 0 1 1
Gruppe 1
1 0 0 0 1 1
4 0 1 0 0 1
8 1 0 0 0 1
Gruppe 2
3 0 0 1 1 1
9 1 0 0 1 1
10 1 0 1 0 1
12 1 1 0 0 1
Gruppe 3
5 0 1 0 1 1
7 0 1 1 1 1
13 1 1 0 1 1
1;3 0 0 - 1
1;9 - 0 0 1
4;12 - 1 0 0
8;9 1 0 0 -
8;10 1 0 - 0
8;13 1 - 0 0
3;7 0 - 1 1
9;13 1 - 0 1
12;13 1 1 0 -
8;9 1 0 0 -
12;13 1 1 0 -
8;10 1 0 - 0
1;3 0 0 - 1
8;13 1 - 0 0
3;7 0 - 1 1
9;13 1 - 0 1
1;9 - 0 0 1
4;12 - 1 0 0
Gruppe 1
8;9 1 0 0 -
Gruppe 2
12;13 1 1 0 -
8;9;12;13 1 - 0 -
Gruppe 1
8;10 1 0 - 0
1;3 0 0 - 1
Grupp 1
8;13 1 - 0 0
Gruppe 2
9;13 1 - 0 1
3;7 0 - 1 1
8;13;9;13 1 - 0 -
Gruppe 1
1;9 - 0 0 1
4;12 - 1 0 0
8;9;12;13 1 - 0 -
8;10 1 0 - 0
1;3 0 0 - 1
3;7 0 - 1 1
1;9 - 0 0 1
4;12 - 1 0 0
5 0 1 0 1
1 3 4 5 7 8 9 10 11 12 13
8;9;12;13 * * * *
8;10 * *
1;3 * *
3;7 * *
1;19 * *
4;12 * *
5 *
1 3 4 5 7 8 9 10 11 12 13
8;9;12;13 * * * *
8;10 * *
3;7 * *
1;19 * *
4;12 * *
5 *
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 0
9 1 0 0 1 0
10 1 0 1 0 1
11 1 0 1 1 0
12 1 1 0 0 0
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 1
0 0 0 0 0 1
2 0 0 1 0 1
4 0 1 0 0 1
7 0 1 1 1 1
10 1 0 1 0 1
13 1 1 0 1 1
15 1 1 1 1 1
Gruppe 0
0 0 0 0 0 1
Gruppe 1
2 0 0 1 0 1
4 0 1 0 0 1
Gruppe 2
10 1 0 1 0 1
Gruppe 3
7 0 1 1 1 1
13 1 1 0 1 1
Gruppe 4
15 1 1 1 1 1
0;2 0 0 - 0
0;4 0 - 0 0
2;10 - 0 1 0
7;15 - 1 1 1
13;15 1 1 - 1
13;15 1 1 - 1
0;2 0 0 - 0
0;4 0 - 0 0
2;10 - 0 1 0
7;15 - 1 1 1
0 2 4 7 10 13 15
13;15 * *
0;2 * *
0;4 * *
2;10 * *
7;15 * *
0 2 4 7 10 13 15
13;15 * *
0;4 * *
2;10 * *
7;15 * *
y := (d and c and a) or (not d and not b and not a) or (not c and b and not a) or (c and b and a)
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 0
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 0
0 0 0 0 0 1
1 0 0 0 1 1
4 0 1 0 0 1
5 0 1 0 1 1
8 1 0 0 0 1
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
Gruppe 0
0 0 0 0 0 1
Gruppe 1
1 0 0 0 1 1
4 0 1 0 0 1
8 1 0 0 0 1
Gruppe 2
5 0 1 0 1 1
10 1 0 1 0 1
12 1 1 0 0 1
Gruppe 3
11 1 0 1 1 1
13 1 1 0 1 1
0;1 0 0 0 -
0;4 0 - 0 0
0;8 - 0 0 0
1;5 0 - 0 1
8;10 1 0 - 0
8;12 1 - 0 0
5;13 - 1 0 1
10:11 1 0 1 -
12;13 1 1 0 -
0;8 - 0 0 0
5;13 - 1 0 1
8;12 1 - 0 0
1;5 0 - 0 1
0;4 0 - 0 0
8;10 1 0 - 0
0;1 0 0 0 -
10:11 1 0 1 -
12;13 1 1 0 -
0;8 - 0 0 0
5;13 - 1 0 1
Gruppe 0
0;4 0 - 0 0
Gruppe 1
8;12 1 - 0 0
1;5 0 - 0 1
8;10 1 0 - 0
Gruppe 0
0;1 0 0 0 -
Gruppe 2
10:11 1 0 1 -
12;13 1 1 0 -
0;8 - 0 0 0
5;13 - 1 0 1
Gruppe 0
0;4 0 - 0 0
Gruppe 1
8;12 1 - 0 0
1;5 0 - 0 1
0;4;8;12 - - 0 0
0;4;1;5 0 - 0 -
8;10 1 0 - 0
Gruppe 0
0;1 0 0 0 -
Gruppe 2
10:11 1 0 1 -
12;13 1 1 0 -
0;8 - 0 0 0
5;13 - 1 0 1
0;4;8;12 - - 0 0
0;4;1;5 0 - 0 -
8;10 1 0 - 0
0;1 0 0 0 -
10:11 1 0 1 -
12;13 1 1 0 -
y := (not c and not b and not a) or
(c and not b and a) or
(not b and not a) or
(not d and not b) or
(d and not c and a) or
(not d and not c and not b) or
(d and not c and b) or
(d and c and not b)
0 1 4 5 8 10 11 12 13
0;8 * *
5;13 * *
0;4;8;12 * * * *
0;4;1;5 * * * *
8;10 * *
0;1 * *
10;11 * *
12;13 * *
0 1 4 5 8 10 11 12 13
5;13 * *
0;4;8;12 * * * *
0;4;1;5 * * * *
8;10 * *
10;11 * *
5;13 - 1 0 1
0;4;8;12 - - 0 0
0;4;1;5 0 - 0 -
8;10 1 0 - 0
10:11 1 0 1 -
y := (c and not b and a) or (not b and not a) or (not d and not b) or (d and not c and not a) or (d and not c and b)
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 0
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 1
0 0 0 0 0 1
3 0 0 1 1 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 1
14 1 1 1 0 1
15 1 1 1 1 1
Gruppe 0
0 0 0 0 0 1
Gruppe 1
8 1 0 0 0 1
Gruppe 2
3 0 0 1 1 1
5 0 1 0 1 1
6 0 1 1 0 1
9 1 0 0 1 1
10 1 0 1 0 1
Gruppe 3
7 0 1 1 1 1
11 1 0 1 1 1
14 1 1 1 0 1
Gruppe 4
15 1 1 1 1 1
0;8 - 0 0 0
8;9 1 0 0 -
8;10 1 0 - 0
3;7 0 - 1 1
5;7 0 1 - 1
6;7 0 1 1 -
10;11 1 0 1 -
10;14 1 - 1 0
9;11 1 0 - 1
7;15 - 1 1 1
11;15 1 - 1 1
14;15 1 1 1 -
0;8 - 0 0 0
7;15 - 1 1 1
3;7 0 - 1 1
10;14 1 - 1 0
11;15 1 - 1 1
5;7 0 1 - 1
9;11 1 0 - 1
8;10 1 0 - 0
8;9 1 0 0 -
6;7 0 1 1 -
10;11 1 0 1 -
14;15 1 1 1 -
Gruppe 0
0;8 - 0 0 0
Gruppe 3
7;15 - 1 1 1
Gruppe 2
3;7 0 - 1 1
10;14 1 - 1 0
Gruppe 3
11;15 1 - 1 1
Gruppe 1
8;10 1 0 - 0
Gruppe 2
5;7 0 1 - 1
9;11 1 0 - 1
Gruppe 1
8;9 1 0 0 -
Gruppe 2
6;7 0 1 1 -
10;11 1 0 1 -
Gruppe 3
14;15 1 1 1 -
Gruppe 0
0;8 - 0 0 0
Gruppe 3
7;15 - 1 1 1
Gruppe 2
3;7 0 - 1 1
10;14 1 - 1 0
Gruppe 3
11;15 1 - 1 1
3;7;11;15 - - 1 1
10;14;11;15 1 - 1 -
Gruppe 1
8;10 1 0 - 0
Gruppe 2
5;7 0 1 - 1
9;11 1 0 - 1
5;7 0 1 - 1
8;10;9;11 1 0 - -
Gruppe 1
8;9 1 0 0 -
Gruppe 2
6;7 0 1 1 -
10;11 1 0 1 -
Gruppe 3
14;15 1 1 1 -
8;9;10;11 1 0 - -
6;7;14;15 - 1 1 -
10;11;14;15 1 - 1 -
0;8 - 0 0 0
7;15 - 1 1 1
3;7;11;15 - - 1 1
10;14;11;15 1 - 1 -
5;7 0 1 - 1
8;10;9;11 1 0 - -
8;9;10;11 1 0 - -
6;7;14;15 - 1 1 -
10;11;14;15 1 - 1 -
0 3 5 6 7 8 9 10 11 14 15
0;8 * *
7;15 * *
3;7;11;15 * * * *
10;14;11;15 * * * *
5;7 * *
8;10;9;11 * * * *
6;7;14;15 * * * *
0 3 5 6 7 8 9 10 11 14 15
0;8 * *
3;7;11;15 * * * *
5;7 * *
8;10;9;11 * * * *
6;7;14;15 * * * *
y := (not c and not b and not a) or
(b and ) or
(not d and b and a) or
(d and not c) or
(d and b)
0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 0 9 1 0 0 1 0 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 0 13 1 1 0 1 1 14 1 1 1 0 1 15 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 13 1 1 0 1 1 14 1 1 1 0 1 Gruppe 0 0 0 0 0 0 1 Gruppe 1 1 0 0 0 1 1 Gruppe 2 6 0 1 1 0 1 Gruppe 3 7 0 1 1 1 1 13 1 1 0 1 1 14 1 1 1 0 1 0;1 0 0 0 - 6;7 0 1 1 - 13 1 1 0 1 6;14 - 1 1 0 y := (not d and not c and not b) or (not d and c and b) or (d and c and not b and a) or (c and b and not a)
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 0
9 1 0 0 1 0
10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 0
15 1 1 1 1 0
0 0 0 0 0 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
11 1 0 1 1 1
12 1 1 0 0 1
Gruppe 0
0 0 0 0 0 1
Gruppe 1
4 0 1 0 0 1
Gruppe 2
5 0 1 0 1 1
6 0 1 1 0 1
12 1 1 0 0 1
Gruppe 3
7 0 1 1 1 1
11 1 0 1 1 1
0;4 0 - 0 0
4;5 0 1 0 -
4;6 0 1 - 0
4;12 - 1 0 0
5;7 0 1 - 1
6;7 0 1 1 -
12 1 1 0 0
11 1 0 1 1
4;5 0 1 0 -
6;7 0 1 1 -
5;7 0 1 - 1
4;6 0 1 - 0
0;4 0 - 0 0
4;12 - 1 0 0
12 1 1 0 0
11 1 0 1 1
Gruppe 1
4;5 0 1 0 -
Gruppe 2
6;7 0 1 1 -
4;5;6;7 0 1 - -
Gruppe 1
4;6 0 1 - 0
Gruppe 2
5;7 0 1 - 1
4;6;5;7 0 1 - -
0;4 0 - 0 0
4;12 - 1 0 0
12 1 1 0 0
11 1 0 1 1
Gruppe 1
4;5 0 1 0 -
Gruppe 2
6;7 0 1 1 -
4;5;6;7 0 1 - -
Gruppe 1
4;6 0 1 - 0
Gruppe 2
5;7 0 1 - 1
4;6;5;7 0 1 - -
0;4 0 - 0 0
4;12 - 1 0 0
11 1 0 1 1
4;6;5;7 0 1 - -
0 4 5 6 7 11 12
0;4 * *
4;12 * *
11 *
4;5;6;7 * * * *
y := (not d and not b and not a) or (c and not b and not a) or (d and not c and b and a) or (not d and c)
b a x b a y
0 0 0 0 0 0 0
1 0 0 1 1 0 0
2 0 1 0 1 0 1
3 0 1 1 0 1 1
4 1 0 0 0 0 0
5 1 0 1 1 1 1
6 1 1 0 0 0 1
7 1 1 1 1 1 0
b a x b
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0
4 1 0 0 0
5 1 0 1 1
6 1 1 0 0
7 1 1 1 1
b a x a
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 0
7 1 1 1 1
b a x y
0 0 0 0 0
1 0 0 1 0
2 0 1 0 1
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0
b a x b
1 0 0 1 1
2 0 1 0 1
5 1 0 1 1
7 1 1 1 1
b a x a
3 0 1 1 1
5 1 0 1 1
7 1 1 1 1
b a x y
2 0 1 0 1
3 0 1 1 1
5 1 0 1 1
6 1 1 0 1
b a x b
Gruppe 1
1 0 0 1 1
2 0 1 0 1
Gruppe 2
5 1 0 1 1
Gruppe 3
7 1 1 1 1
b a x a
Gruppe 2
3 0 1 1 1
5 1 0 1 1
Gruppe 3
7 1 1 1 1
b a x y
Gruppe 1
2 0 1 0 1
Gruppe 2
3 0 1 1 1
5 1 0 1 1
6 1 1 0 1
b a x b
Gruppe 1
1 0 0 1 1
2 0 1 0 1
Gruppe 2
5 1 0 1 1
Gruppe 3
7 1 1 1 1
1;5 - 0 1
2 0 1 0
5;7 1 - 1
b := (not a and x) or (not b and a and not x) or (b and x)
b a x a
Gruppe 2
3 0 1 1 1
5 1 0 1 1
Gruppe 3
7 1 1 1 1
3;7 - 1 1
5;7 1 - 1
a := (a and x) or (b and x)
b a x y
Gruppe 1
2 0 1 0 1
Gruppe 2
3 0 1 1 1
5 1 0 1 1
6 1 1 0 1
2;3 0 1 -
5 1 0 1
2;6 - 1 0
y := (not b and a) or (b and not a and x) or (a and not x)
b := (not a and x) or (not b and a and not x) or (b and x)
a := (a and x) or (b and x)
y := (not b and a) or (b and not a and x) or (a and not x)
b := (b and not x) or (not b and a and x) or (b and a and not x)
a := (b and not a and x) or (b and not a and not x) or (not b and a and not x) or (b and a and x)
y := (not a and not x) or (not a and b) or (b and x)
Wahrheitstabelle
b a x b a y
0 0 0 0 0 0 1
1 0 0 1 0 0 0
2 0 1 0 0 1 0
3 0 1 1 1 0 0
4 1 0 0 1 1 1
5 1 0 1 0 1 1
6 1 1 0 1 0 0
7 1 1 1 0 1 1
b a x b a y
0 0 0 0 0 0 1
1 0 0 1 0 1 0
2 0 1 0 1 1 1
3 0 1 1 0 0 1
4 1 0 0 1 1 0
5 1 0 1 1 0 0
6 1 1 0 1 0 1
7 1 1 1 0 1 0
b a x b
0 0 0 0 0
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0
b a x a
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 0
6 1 1 0 0
7 1 1 1 1
b a x y
0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 1
4 1 0 0 0
5 1 0 1 0
6 1 1 0 1
7 1 1 1 0
b a x b
2 0 1 0 1
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
b a x a
1 0 0 1 1
2 0 1 0 1
4 1 0 0 1
7 1 1 1 1
b a x y
0 0 0 0 1
2 0 1 0 1
3 0 1 1 1
6 1 1 0 1
b a x b
Gruppe 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
5 1 0 1 1
6 1 1 0 1
b a x a
Gruppe 1
1 0 0 1 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
7 1 1 1 1
b a x y
Gruppe 0
0 0 0 0 1
Gruppe 1
2 0 1 0 1
Gruppe 2
3 0 1 1 1
6 1 1 0 1
b a x b
Gruppe 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
5 1 0 1 1
6 1 1 0 1
2;6 - 1 0
4;5 1 - 0
b := (a and not x) or (b and not x)
b a x a
Gruppe 1
1 0 0 1 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
7 1 1 1 1
a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and x)
b a x y
Gruppe 0
0 0 0 0 1
Gruppe 1
2 0 1 0 1
Gruppe 2
3 0 1 1 1
6 1 1 0 1
0;2 0 - 0
2;3 0 1 -
2;6 - 1 0
y := (not b and not x) or (not b and a) or (a and not x)
b := (a and not x) or (b and not x)
a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and
x)
y := (not b and not x) or (not b and a) or (a and not x)
Ich baue heute abend wieder eine Schaltung. Da ich nicht so viel Platz auf den Platinen habe - mache ich das so - ich baue folgende Schaltungen, zu folgenden Schaltwerken 00 01 01 10 10 11 11 00 00 10 01 00 10 11 11 Sie sehen, das sind gar nicht mal so wenige. Das sind sogar eine Menge. Ich baue nur autonome Schaltwerke mit zwei Flip Flops. Jetzt mal das erste. ba ba 00 01 01 10 10 11 11 00 ba b 00 0 01 1 10 1 11 0 ba a 00 1 01 0 10 1 11 0 b := (not b and a) or (b and not a) a := (not b)
b a x b a y
1 0 0 0 0 0 1
2 0 0 1 0 1 0
3 0 1 0 1 1 0
4 0 1 1 1 0 1
5 1 0 0 1 1 0
6 1 0 1 0 0 1
7 1 1 0 1 1 0
8 1 1 1 0 0 0
b a x b
1 0 0 0 0
2 0 0 1 0
3 0 1 0 1
4 0 1 1 1
5 1 0 0 1
6 1 0 1 0
7 1 1 0 1
8 1 1 1 0
b a x a
1 0 0 0 0
2 0 0 1 1
3 0 1 0 1
4 0 1 1 0
5 1 0 0 1
6 1 0 1 0
7 1 1 0 1
8 1 1 1 0
b a x y
1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 0 1 1 1
5 1 0 0 0
6 1 0 1 1
7 1 1 0 0
8 1 1 1 0
b a x b
3 0 1 0 1
4 0 1 1 1
5 1 0 0 1
7 1 1 0 1
b a x a
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
7 1 1 0 1
b a x y
1 0 0 0 1
4 0 1 1 1
6 1 0 1 1
b a x b
Gruppe 1
3 0 1 0 1
5 1 0 0 1
Gruppe 2
4 0 1 1 1
7 1 1 0 1
b a x a
Gruppe 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
Gruppe 2
7 1 1 0 1
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 2
4 0 1 1 1
6 1 0 1 1
b a x b
Gruppe 1
3 0 1 0 1
5 1 0 0 1
Gruppe 2
4 0 1 1 1
7 1 1 0 1
3;7 - 1 0
5;7 1 - 0
3;4 0 1 -
b a x a
Gruppe 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
Gruppe 2
7 1 1 0 1
2 0 0 1
3;7 - 1 0
5;7 1 - "s
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 2
4 0 1 1 1
6 1 0 1 1
b a x b
Gruppe 1
3 0 1 0 1
5 1 0 0 1
Gruppe 2
4 0 1 1 1
7 1 1 0 1
3;7 - 1 0
5;7 1 - 0
3;4 0 1 -
b := (a and not x) or (b and not x) or (not b and a)
b a x a
Gruppe 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
Gruppe 2
7 1 1 0 1
2 0 0 1
3;7 - 1 0
5;7 1 - 0
a := (not b and not a and x) or (a and not x) or (b and not x)
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 2
4 0 1 1 1
6 1 0 1 1
y := (not b and not a and not x) or (not b and a and x) or (b and not a and x)
b := (a and not x) or (b and not x) or (not b and a)
a := (not b and not a and x) or (a and not x) or (b and not x)
y := (not b and not a and not x) or (not b and a and x) or (b and not a and x)
bax bay
1 000 001
2 001 010
3 010 111
4 011 001
5 100 110
6 101 100
7 110 101
8 111 010
bax b
1 000 0
2 001 0
3 010 1
4 011 0
5 100 1
6 101 1
7 110 1
8 111 0
bax a
1 000 0
2 001 1
3 010 1
4 011 0
5 100 1
6 101 0
7 110 0
8 111 1
bax y
1 000 1
2 001 0
3 010 1
4 011 1
5 100 0
6 101 0
7 110 1
8 111 0
bax b
3 010 1
5 100 1
6 101 1
7 110 1
bax a
2 001 1
3 010 1
5 100 1
8 111 1
bax y
1 000 1
3 010 1
4 011 1
7 110 1
bax b
Gruppe 1
3 010 1
5 100 1
Gruppe 2
6 101 1
7 110 1
bax a
Gruppe 1
2 001 1
3 010 1
5 100 1
Gruppe 3
8 111 1
bax y
Gruppe 0
1 000 1
Gruppe 1
3 010 1
Gruppe 2
4 011 1
7 110 1
bax b
Gruppe 1
3 010 1
5 100 1
Gruppe 2
6 101 1
7 110 1
5;6 1 0 -
5;7 1 - 0
3;7 - 1 0
b := (b and not a) or (b and not x) or (a and not x)
bax a
Gruppe 1
2 001 1
3 010 1
5 100 1
Gruppe 3
8 111 1
a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and x)
bax y
Gruppe 0
1 000 1
Gruppe 1
3 010 1
Gruppe 2
4 011 1
7 110 1
3;4 0 1 -
1;3 0 - 0
3;7 - 1 0
y := (not b and a) or (not b and not x) or (a and not x)
b := (b and not a) or (b and not x) or (a and not x)
a := (not b and not a and x) or (not b and a and not x) or (b and not a and not x) or (b and a and x)
y := (not b and a) or (not b and not x) or (a and not x)
b := (not b and not a) or (b and a) or (not b and not x) or (not x)
a := b and x
y := (not b and not a) or (b and a and not x)
b a x b a y
0 0 0 0 1 0 1
1 0 0 1 1 0 1
2 0 1 0 1 0 0
3 0 1 1 0 0 0
4 1 0 0 1 0 0
5 1 0 1 0 1 0
6 1 1 0 1 0 1
7 1 1 1 1 1 0
b a x b a y
1 0 0 0 0 1 1
2 0 0 1 0 1 1
3 0 1 0 0 0 0
4 0 1 1 1 0 1
5 1 0 0 0 0 1
6 1 0 1 0 1 0
7 1 1 0 1 1 1
8 1 1 1 1 1 0
b a x b
1 0 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 1 1 1
5 1 0 0 0
6 1 0 1 0
7 1 1 0 1
8 1 1 1 1
b a x a
1 0 0 0 1
2 0 0 1 1
3 0 1 0 0
4 0 1 1 0
5 1 0 0 0
6 1 0 1 1
7 1 1 0 1
8 1 1 1 1
b a x y
1 0 0 0 1
2 0 0 1 1
3 0 1 0 0
4 0 1 1 1
5 1 0 0 1
6 1 0 1 0
7 1 1 0 1
8 1 1 1 0
b a x b
4 0 1 1 1
7 1 1 0 1
8 1 1 1 1
b a x a
1 0 0 0 1
2 0 0 1 1
6 1 0 1 1
7 1 1 0 1
8 1 1 1 1
b a x y
1 0 0 0 1
2 0 0 1 1
4 0 1 1 1
5 1 0 0 1
7 1 1 0 1
b a x b
Gruppe 2
4 0 1 1 1
7 1 1 0 1
Gruppe 3
8 1 1 1 1
b a x a
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
Gruppe 2
6 1 0 1 1
7 1 1 0 1
Gruppe 3
8 1 1 1 1
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
5 1 0 0 1
Gruppe 2
4 0 1 1 1
7 1 1 0 1
b a x b
Gruppe 2
4 0 1 1 1
7 1 1 0 1
Gruppe 3
8 1 1 1 1
4;8 - 1 1
7;8 1 1 -
b := (a and x) or (b and a)
b a x a
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
Gruppe 2
6 1 0 1 1
7 1 1 0 1
Gruppe 3
8 1 1 1 1
1;2 0 0 -
2;6 - 0 1
6;8 1 - 1
7;8 1 1 -
a := (not b and not a) or (not a and x) or (b and x) or (b and a)
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
5 1 0 0 1
Gruppe 2
4 0 1 1 1
7 1 1 0 1
1;2 0 0 -
1;5 - 0 0
2;4 0 - 1
5;7 1 - 0
y := (not b and not a) or (not a and not x) or (not b and x) or (b and not x)
b := (a and x) or (b and a)
a := (not b and not a) or (not a and x) or (b and x) or (b and a)
y := (not b and not a) or (not a and not x) or (not b and x) or (b and not x)
b a x b a y
1 0 0 0 1 0 1
2 0 0 1 1 1 1
3 0 1 0 0 0 1
4 0 1 1 0 1 0
5 1 0 0 1 0 0
6 1 0 1 1 1 0
7 1 1 0 0 1 1
8 1 1 1 1 0 1
b a x b
1 0 0 0 1
2 0 0 1 1
3 0 1 0 0
4 0 1 1 0
5 1 0 0 1
6 1 0 1 1
7 1 1 0 0
8 1 1 1 1
b a x a
1 0 0 0 0
2 0 0 1 1
3 0 1 0 0
4 0 1 1 1
5 1 0 0 0
6 1 0 1 1
7 1 1 0 1
8 1 1 1 0
b a x y
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
4 0 1 1 0
5 1 0 0 0
6 1 0 1 0
7 1 1 0 1
8 1 1 1 1
b a x b
1 0 0 0 1
2 0 0 1 1
5 1 0 0 1
6 1 0 1 1
8 1 1 1 1
b a x a
2 0 0 1 1
4 0 1 1 1
6 1 0 1 1
7 1 1 0 1
b a x y
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
7 1 1 0 1
8 1 1 1 1
b a x b
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
5 1 0 0 1
Gruppe 2
6 1 0 1 1
Gruppe 3
8 1 1 1 1
b a x a
Gruppe 1
2 0 0 1 1
Gruppe 2
4 0 1 1 1
6 1 0 1 1
7 1 1 0 1
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
3 0 1 0 1
Gruppe 2
7 1 1 0 1
Gruppe 3
8 1 1 1 1
b a x b
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
5 1 0 0 1
Gruppe 2
6 1 0 1 1
Gruppe 3
8 1 1 1 1
1;2 0 0 -
1;5 - 0 0
2;6 - 0 1
5;6 1 0 -
6;8 1 - 0
1;5 - 0 0
2;6 - 0 1
1;2 0 0 -
5;6 1 0 -
6;8 1 - 0
1;5;2;5 - 0 -
1;2;5;6 - 0 -
6;8 1 - 0
b := (not a) or (b and not x)
b a x a
Gruppe 1
2 0 0 1 1
Gruppe 2
4 0 1 1 1
6 1 0 1 1
7 1 1 0 1
2;4 0 - 1
2;6 - 0 1
7 1 1 0
a := (not b and x) or (not a and x) or (b and a and not x)
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
3 0 1 0 1
Gruppe 2
7 1 1 0 1
Gruppe 3
8 1 1 1 1
1;2 0 0 -
1;3 0 - 0
3;7 - 1 0
7;8 1 1 -
y := (not b and not a) or (not b and not x) or (a and not x) or (b and a)
b := (not a) or (b and not x)
a := (not b and x) or (not a and x) or (b and a and not x)
y := (not b and not a) or (not b and not x) or (a and not x) or (b and a)
b a x b a y
1 0 0 0 0 0 0
2 0 0 1 0 1 0
3 0 1 0 0 0 1
4 0 1 1 1 0 1
5 1 0 0 0 0 1
6 1 0 1 0 1 1
7 1 1 0 1 0 1
8 1 1 1 0 0 1
b a x b
1 0 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 1 1 1
5 1 0 0 0
6 1 0 1 0
7 1 1 0 1
8 1 1 1 0
b a x a
1 0 0 0 0
2 0 0 1 1
3 0 1 0 0
4 0 1 1 0
5 1 0 0 0
6 1 0 1 1
7 1 1 0 0
8 1 1 1 0
b a x y
1 0 0 0 0
2 0 0 1 0
3 0 1 0 1
4 0 1 1 1
5 1 0 0 1
6 1 0 1 1
7 1 1 0 1
8 1 1 1 1
b a x b
4 0 1 1 1
7 1 1 0 1
b a x a
2 0 0 1 1
6 1 0 1 1
b a x y
3 0 1 0 1
4 0 1 1 1
5 1 0 0 1
6 1 0 1 1
7 1 1 0 1
8 1 1 1 1
b a x b
Gruppe 2
4 0 1 1 1
7 1 1 0 1
b := (not b and a and x) or (b and a and not x)
b a x a
Gruppe 1
2 0 0 1 1
Gruppe 2
6 1 0 1 1
2;6 - 0 1
a := (not a and x)
b a x y
Gruppe 1
5 1 0 0 1
3 0 1 0 1
Gruppe 2
4 0 1 1 1
6 1 0 1 1
7 1 1 0 1
Gruppe 3
8 1 1 1 1
5;6 1 0 -
5;7 1 - 0
3;4 0 1 -
3;7 - 1 0
4;8 - 1 1
4;6 1 - 1
7;8 1 1 -
5;6 1 0 -
3;4 0 1 -
7;8 1 1 -
4;6 1 - 1
5;7 1 - 0
3;7 - 1 0
4;8 - 1 1
Gruppe 1
5;6 1 0 -
3;4 0 1 -
Gruppe 2
7;8 1 1 -
5;6;3;4 1 - -
3;4;7;8 - 1 -
Gruppe 1
5;7 1 - 0
Gruppe 2
4;6 1 - 1
4;6;5;7 1 - -
Gruppe 1
3;7 - 1 0
Gruppe 2
4;8 - 1 1
3;7;4;8 - 1 -
5;6;3;4 1 - -
3;4;7;8 - 1 -
y := b or a
b := (not b and a and x) or (b and a and not x)
a := (not a and x)
y := b or a
c b a c b a
0 0 0 0 0 1 1
1 0 0 1 0 0 0
2 0 1 0 1 1 1
3 0 1 1 0 0 1
4 1 0 0 1 0 1
5 1 0 1 1 1 1
6 1 1 0 0 1 1
7 1 1 1 1 0 0
c b a c
0 0 0 0 0
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 0
7 1 1 1 1
c b a b
0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0
c b a a
0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 1
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0
c b a c
2 0 1 0 1
4 1 0 0 1
5 1 0 1 1
7 1 1 1 1
c b a b
0 0 0 0 1
2 0 1 0 1
5 1 0 1 1
6 1 1 0 1
c b a a
0 0 0 0 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
c b a c
Gruppe 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
5 1 0 1 1
Gruppe 3
7 1 1 1 1
c b a b
Gruppe 0
0 0 0 0 1
Gruppe 1
2 0 1 0 1
Gruppe 2
5 1 0 1 1
6 1 1 0 1
c b a a
Gruppe 0
0 0 0 0 1
Gruppe 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
3 0 1 1 1
5 1 0 1 1
6 1 1 0 1
c b a c
Gruppe 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
5 1 0 1 1
Gruppe 3
7 1 1 1 1
2 0 1 0
4;5 1 0 -
4;7 1 - 1
a := (not c and b and not a) or (c and not b) or (c and a)
c b a b
Gruppe 0
0 0 0 0 1
Gruppe 1
2 0 1 0 1
Gruppe 2
5 1 0 1 1
6 1 1 0 1
0;2 0 - 0
5 1 0 1
2;6 - 1 0
b := (not c and not a) or (c and not b and a) or (b and not a)
c b a a
Gruppe 0
0 0 0 0 1
Gruppe 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
3 0 1 1 1
5 1 0 1 1
6 1 1 0 1
0;2 0 - 0
0;4 - 0 0
2;3 0 1 -
2;6 - 1 0
4;5 1 0 -
4;6 1 - 0
2;6 - 1 0
0;4 - 0 0
4;6 1 - 0
0;2 0 - 0
2;3 0 1 -
4;5 1 0 -
2;6;0;4 - - 0
0;6;0;2 - - 0
2;3 0 1 -
4;5 1 0 -
2;6;0;4 - - 0
2;3 0 1 -
4;5 1 0 -
c := (not a) or (not c and b) or (c and not b)
a := (not c and b and not a) or (c and not b) or (c and a)
b := (not c and not a) or (c and not b and a) or (b and not a)
c := (not a) or (not c and b) or (c and not b)
000 0 001 000 1 010 001 0 011 001 1 100 010 0 101 010 1 110 001 0 000 001 1 000 100 0 000 100 1 000 101 0 000 101 1 000 110 0 000 110 1 000 000 0 0 000 1 0 001 0 0 001 1 1 010 0 1 010 1 1 000 0 0 000 1 1 001 0 1 001 1 0 010 0 0 010 1 1 000 0 1 000 1 0 001 0 1 001 1 0 010 0 1 010 1 0 001 1 1 010 0 1 010 1 1 000 1 1 001 0 1 010 1 1 000 0 1 001 0 1 010 0 1 Gruppe 1 0 010 0 1 Gruppe 2 1 001 1 1 2 010 1 1 1 001 1 1 0;2 010 - 1 c = (not c and not b and a and x) or (not c and b and not a) -------------------- Gruppe 2 0 000 1 1 1 001 0 1 Gruppe 3 3 010 1 1 1 001 0 1 0;3 0-0 1 1 b = (not c and not b and a and not x) or (not c and not a and x) -------------------- Gruppe 1 0 000 0 1 Gruppe 2 1 001 0 1 2 010 0 1 0;1 00-0 1 0;2 0-00 1 a = (not c and not b and not x) or (not c and not a and not x) c = (not c and not b and a and x) or (not c and b and not a) b = (not c and not b and a and not x) or (not c and not a and x) a = (not c and not b and not x) or (not c and not a and not x)
0 0 0 0 1 1
0 0 1 0 1 1
0 1 0 1 1 1
0 1 1 1 0 1
1 0 0 0 1 1
1 0 1 0 0 0
1 1 0 1 0 1
1 1 1 1 1 1
b a x b a y
1 0 0 0 0 1 1
2 0 0 1 0 1 1
3 0 1 0 1 1 1
4 0 1 1 1 0 1
5 1 0 0 0 1 1
6 1 0 1 0 0 0
7 1 1 0 1 0 1
8 1 1 1 1 1 1
b a x b
1 0 0 0 0
2 0 0 1 0
3 0 1 0 1
4 0 1 1 1
5 1 0 0 0
6 1 0 1 0
7 1 1 0 1
8 1 1 1 1
b a x a
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
4 0 1 1 0
5 1 0 0 1
6 1 0 1 0
7 1 1 0 0
8 1 1 1 1
b a x y
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
4 0 1 1 1
5 1 0 0 1
6 1 0 1 0
7 1 1 0 1
8 1 1 1 1
b a x b
3 0 1 0 1
4 0 1 1 1
7 1 1 0 1
8 1 1 1 1
b a x a
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
8 1 1 1 1
b a x y
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
4 0 1 1 1
5 1 0 0 1
7 1 1 0 1
8 1 1 1 1
b a x b
Gruppe 1
3 0 1 0 1
Gruppe 2
4 0 1 1 1
7 1 1 0 1
Gruppe 3
8 1 1 1 1
3;4 0 1 -
4;8 - 1 1
7;8 1 1 -
b := (not b and a) or (a and x) or (b and a)
b a x a
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
8 1 1 1 1
b a x a
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
Gruppe 3
8 1 1 1 1
1;2 0 0 -
1;3 0 - 0
1;5 - 0 0
8 1 1 1
a := (not b and not a) or (not b and not x) or (not a and not x) or (b and a and x)
b a x y
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
4 0 1 1 1
5 1 0 0 1
7 1 1 0 1
8 1 1 1 1
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
Gruppe 2
4 0 1 1 1
7 1 1 0 1
Gruppe 3
8 1 1 1 1
1;2 0 0 -
1;3 0 - 0
1;5 - 0 0
2;4 0 - 1
3;4 0 1 -
3;7 - 1 0
5;7 1 - 0
4;8 - 1 1
7;8 1 1 -
1;2 0 0 -
3;4 0 1 -
7;8 1 1 -
5;7 1 - 0
2;4 0 - 1
1;3 0 - 0
3;7 - 1 0
4;8 - 1 1
1;5 - 0 0
1;2;3;4 0 - -
3;4;7;8 - 1 -
5;7;1;3 - - 0
2;4;1;3 0 - -
1;5;3;7 - - 0
3;7;4;8 - 1 -
1;2;3;4 0 - -
2;4;1;3 0 - -
3;4;7;8 - 1 -
3;7;4;8 - 1 -
5;7;1;3 - - 0
1;5;3;7 - - 0
1;2;3;4 0 - -
3;4;7;8 - 1 -
1;5;3;7 - - 0
y := not b or a or not x
b := (not b and a) or (a and x) or (b and a)
a := (not b and not a) or (not b and not x) or (not a and not x) or (b and a and x)
y := not b or a or not x
b a x b a y
0 0 0 0 1 0 1
1 0 0 1 1 1 1
2 0 1 0 1 1 1
3 0 1 1 1 1 1
4 1 0 0 1 0 1
5 1 0 1 0 0 1
6 1 1 0 0 0 0
7 1 1 1 1 1 1
b a x b
0 0 0 0 1
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 1
5 1 0 1 0
6 1 1 0 0
7 1 1 1 1
b a x a
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 0
5 1 0 1 0
6 1 1 0 0
7 1 1 1 1
b a x y
0 0 0 0 1
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 1
5 1 0 1 1
6 1 1 0 0
7 1 1 1 1
b a x b
0 0 0 0 1
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 1
7 1 1 1 1
b a x a
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
7 1 1 1 1
b a x y
0 0 0 0 1
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 1
5 1 0 1 1
7 1 1 1 1
b a x b
Gruppe 0
0 0 0 0 1
Gruppe 1
1 0 0 1 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
3 0 1 1 1
Gruppe 3
7 1 1 1 1
b a x a
Gruppe 1
1 0 0 1 1
2 0 1 0 1
Gruppe 2
3 0 1 1 1
Gruppe 3
7 1 1 1 1
b a x y
Gruppe 0
0 0 0 0 1
Gruppe 1
1 0 0 1 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
3 0 1 1 1
5 1 0 1 1
Gruppe 3
7 1 1 1 1
b a x b
Gruppe 0
0 0 0 0 1
Gruppe 1
1 0 0 1 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
3 0 1 1 1
Gruppe 3
7 1 1 1 1
0;1 0 0 -
0;2 0 - 0
0;4 - 0 0
1;3 0 - 1
2;3 0 1 -
3;7 - 1 1
0;1 0 0 -
2;3 0 1 -
0;2 0 - 0
1;3 0 - 1
0;4 - 0 0
3;7 - 1 1
0;1;2;3 0 - -
1;3;0;2 0 - -
0;4 - 0 0
3;7 - 1 1
0;1;2;3 0 - -
0;4 - 0 0
3;7 - 1 1
b := (not b) or (not a and not x) or (a and x)
b a x a
Gruppe 1
1 0 0 1 1
2 0 1 0 1
Gruppe 2
3 0 1 1 1
Gruppe 3
7 1 1 1 1
1;3 0 - 1
2;3 0 1 -
3;7 - 1 1
a := (not b and x) or (not b and a) or (a and x)
b a x y
Gruppe 0
0 0 0 0 1
Gruppe 1
1 0 0 1 1
2 0 1 0 1
4 1 0 0 1
Gruppe 2
3 0 1 1 1
5 1 0 1 1
Gruppe 3
7 1 1 1 1
0;1 0 0 -
0;2 0 - 0
0;4 - 0 0
1;3 0 - 1
1;5 - 0 1
2;3 0 1 -
7;5 1 0 -
3;7 - 1 1
5;7 1 - 1
0;4 - 0 0
1;5 - 0 1
3;7 - 1 1
0;2 0 - 0
1;3 0 - 1
5;7 1 - 1
2;3 0 1 -
7;5 1 0 -
0;1 0 0 -
0;4 - 0 0
1;5 - 0 1
3;7 - 1 1
0;4;1;5 - 0 -
1;5;3;7 - - 1
0;2 0 - 0
1;3 0 - 1
5;7 1 - 1
0;2;1;3 0 - 1
1;3;5;7 - 0 1
0;1 0 0 -
2;3 0 1 -
7;5 1 0 -
0;1;2;3 0 - -
0;1;7;5 - 0 -
0 1 2 3 4 5 7
0;4;1;5 * * * *
1;5;3;7 * * * *
0;2;1;3 * * * *
1;3;5;7 * * * *
0;1;2;3 * * * *
0;1;7;5 * * * *
0 1 2 3 4 5 7
0;4;1;5 * * * *
1;5;3;7 * * * *
0;2;1;3 * * * *
y := (not a) or (not a and x) or (not b and x)
b := (not b) or (not a and not x) or (a and x)
a := (not b and x) or (not b and a) or (a and x)
y := (not a) or (not a and x) or (not b and x)
b a x b a y
1 0 0 0 0 0 1
2 0 0 1 0 1 0
3 0 1 0 1 1 1
4 0 1 1 0 0 1
5 1 0 0 1 1 0
6 1 0 1 1 0 0
7 1 1 0 1 0 1
8 1 1 1 0 1 0
b a x b
1 0 0 0 0
2 0 0 1 0
3 0 1 0 1
4 0 1 1 0
5 1 0 0 1
6 1 0 1 1
7 1 1 0 1
8 1 1 1 0
b a x a
1 0 0 0 0
2 0 0 1 1
3 0 1 0 1
4 0 1 1 0
5 1 0 0 1
6 1 0 1 0
7 1 1 0 0
8 1 1 1 1
b a x y
1 0 0 0 1
2 0 0 1 0
3 0 1 0 1
4 0 1 1 1
5 1 0 0 0
6 1 0 1 0
7 1 1 0 1
8 1 1 1 0
b a x b
3 0 1 0 1
5 1 0 0 1
6 1 0 1 1
7 1 1 0 1
b a x a
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
8 1 1 1 1
b a x y
1 0 0 0 1
3 0 1 0 1
4 0 1 1 1
7 1 1 0 1
b a x b
Gruppe 1
3 0 1 0 1
Gruppe 2
5 1 0 0 1
6 1 0 1 1
7 1 1 0 1
b a x a
Gruppe 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
Gruppe 3
8 1 1 1 1
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 1
3 0 1 0 1
Gruppe 2
4 0 1 1 1
7 1 1 0 1
b a x b
Gruppe 1
3 0 1 0 1
Gruppe 2
5 1 0 0 1
6 1 0 1 1
7 1 1 0 1
3;7 - 1 0
6 1 0 1
7 1 1 0
b := (a and not x) or (b and not a and x) or (b and a and not x)
b a x a
Gruppe 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
Gruppe 3
8 1 1 1 1
2 0 0 1
3 0 1 0
5 1 0 0
8 1 1 1
a := (not b and not a and x) or (not b and a and not x) or (b and not and not x) or (b and a and x)
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 1
3 0 1 0 1
Gruppe 2
4 0 1 1 1
7 1 1 0 1
1;3 0 - 0
3;4 0 1 -
3;7 - 1 0
x := (not b and not x) or (not b and a) or (a and not x)
b := (a and not x) or (b and not a and x) or (b and a and not x)
a := (not b and not a and x) or (not b and a and not x) or (b and not and not x) or (b and a and x)
x := (not b and not x) or (not b and a) or (a and not x)
b a x b a y
1 0 0 0 1 0 1
2 0 0 1 1 0 1
3 0 1 0 1 0 0
4 0 1 1 0 0 0
5 1 0 0 1 0 0
6 1 0 1 0 1 0
7 1 1 0 1 0 1
8 1 1 1 1 1 0
b a x b
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
4 0 1 1 0
5 1 0 0 1
6 1 0 1 0
7 1 1 0 1
8 1 1 1 1
b a x a
1 0 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 1 1 0
5 1 0 0 0
6 1 0 1 1
7 1 1 0 0
8 1 1 1 1
b a x y
1 0 0 0 1
2 0 0 1 1
3 0 1 0 0
4 0 1 1 0
5 1 0 0 0
6 1 0 1 0
7 1 1 0 1
8 1 1 1 0
b a x b
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
7 1 1 0 1
8 1 1 1 1
b a x a
6 1 0 1 1
8 1 1 1 1
b a x y
1 0 0 0 1
2 0 0 1 1
7 1 1 0 1
b a x b
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
Gruppe 2
7 1 1 0 1
Gruppe 3
8 1 1 1 1
b a x a
Gruppe 2
6 1 0 1 1
Gruppe 3
8 1 1 1 1
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
Gruppe 2
7 1 1 0 1
b a x b
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
Gruppe 2
7 1 1 0 1
Gruppe 3
8 1 1 1 1
1;2 0 0 -
1;3 0 - 0
1;5 - 0 0
3;7 - 1 0
5;7 - 1 0
7;8 1 1 -
b a x a
Gruppe 2
6 1 0 1 1
Gruppe 3
8 1 1 1 1
6;8 1 - 1
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
Gruppe 2
7 1 1 0 1
1;2 0 0 -
7 1 1 0
b a x b
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
3 0 1 0 1
5 1 0 0 1
Gruppe 2
7 1 1 0 1
Gruppe 3
8 1 1 1 1
1;2 0 0 -
7;8 1 1 -
1;3 0 - 0
1;5 - 0 0
3;7 - 1 0
5;7 - 1 0
1;2 0 0 -
7;8 1 1 -
1;3 0 - 0
1;5;3;7 - - 0
1;5;5;7 - - 0
b := (not b and not a) or (b and a) or (not b and not x) or (not x)
b a x a
Gruppe 2
6 1 0 1 1
Gruppe 3
8 1 1 1 1
6;8 1 - 1
a := (b and x)
b a x y
Gruppe 0
1 0 0 0 1
Gruppe 1
2 0 0 1 1
Gruppe 2
7 1 1 0 1
1;2 0 0 -
7 1 1 0
y := (not b and not a) or (b and a and not x)
0 0 0 0 1 0 1 1 0 0 1 1 0 0 2 0 1 0 0 0 1 3 0 1 1 0 1 1 4 1 0 0 0 0 1 5 1 0 1 0 0 1 6 1 1 0 0 1 0 7 1 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 2 0 1 0 0 3 0 1 1 0 4 1 0 0 0 5 1 0 1 0 6 1 1 0 0 7 1 1 1 1 0 0 0 0 0 1 0 0 1 0 2 0 1 0 0 3 0 1 1 1 4 1 0 0 0 5 1 0 1 0 6 1 1 0 1 7 1 1 1 0 0 0 0 0 1 1 0 0 1 0 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 0 7 1 1 1 1 0 0 0 0 1 1 0 0 1 1 7 1 1 1 1 3 0 1 1 1 6 1 1 0 1 0 0 0 0 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 7 1 1 1 1 0 0 0 0 1 1 0 0 1 1 7 1 1 1 1 0;1 0 0 - 7 1 1 1 3 0 1 1 1 6 1 1 0 1 3 0 1 1 6 1 1 0 0 0 0 0 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 7 1 1 1 1 Gruppe 0 0 0 0 0 1 Gruppe 1 2 0 1 0 1 4 1 0 0 1 Gruppe 2 3 0 1 1 1 5 1 0 1 1 Gruppe 3 7 1 1 1 1 0;2 0 - 0 0;4 - 0 0 2;3 0 1 - 4;5 1 0 - 3;7 - 1 1 5;7 1 - 1 3;7 - 1 1 0;4 - 0 0 5;7 1 - 1 0;2 0 - 0 2;3 0 1 - 4;5 1 0 - 0;1 0 0 - 7 1 1 1 c := (not c and not b) or (c and b and a) 3 0 1 1 6 1 1 0 b := (not c and b and a) or (c and b and not a) 3;7 - 1 1 0;4 - 0 0 5;7 1 - 1 0;2 0 - 0 2;3 0 1 - 4;5 1 0 - a := (b and a) or (not b and not a) or (c and a) or (not c and not a) or (not c and b) or (c and not b) c := (not c and not b) or (c and b and a) b := (not c and b and a) or (c and b and not a) a := (b and a) or (not b and not a) or (c and a) or (not c and not a) or (not c and b) or (c and not b)
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 0 1 0
b a x b a y
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 0 1 0
b a x b a y
0 0 0 0 1 0 0
1 0 0 1 0 0 1
2 0 1 0 0 1 0
3 0 1 1 1 0 0
4 1 0 0 1 0 1
5 1 0 1 1 1 0
6 1 1 0 0 0 0
7 1 1 1 0 1 0
b a x b
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 1
5 1 0 1 1
6 1 1 0 0
7 1 1 1 0
b a x a
0 0 0 0 0
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 0
5 1 0 1 1
6 1 1 0 0
7 1 1 1 1
b a x y
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 0
6 1 1 0 0
7 1 1 1 0
b a x b
0 0 0 0 1
3 0 1 1 1
4 1 0 0 1
5 1 0 1 1
b a x a
2 0 1 0 1
5 1 0 1 1
7 1 1 1 1
b a x y
1 0 0 1 1
4 1 0 0 1
b a x b
Gruppe 0
0 0 0 0 1
Gruppe 1
4 1 0 0 1
Gruppe 2
3 0 1 1 1
5 1 0 1 1
b a x a
Gruppe 1
2 0 1 0 1
Gruppe 2
5 1 0 1 1
Gruppe 3
7 1 1 1 1
b a x y
Gruppe 1
1 0 0 1 1
4 1 0 0 1
b a x b
Gruppe 0
0 0 0 0 1
Gruppe 1
4 1 0 0 1
Gruppe 2
3 0 1 1 1
5 1 0 1 1
0;4 - 0 0
3 0 1 1
4;5 1 0 -
b := (not a and not x) or (not b and a and x) or (b and not a)
----------------------
b a x a
Gruppe 1
2 0 1 0 1
Gruppe 2
5 1 0 1 1
Gruppe 3
7 1 1 1 1
2 0 1 0
5;7 1 - 1
a := (not b and a and not x) or (b and x)
----------------------
b a x y
Gruppe 1
1 0 0 1 1
4 1 0 0 1
1 0 0 1 1
4 1 0 0 1
y := (not b and not a and x) or (b and not a not x)
---------------------
b := (not a and not x) or (not b and a and x) or (b and not a)
a := (not b and a and not x) or (b and x)
y := (not b and not a and x) or (b and not a not x)
000 0 001 000 1 010 001 0 100 001 1 101 010 0 011 010 1 101
Das Schaltwerk lautet wie folgt: Ein Multiplizierschaltwerk. Bei dem wird 8 * 6 die 6 addiert. Zum Beispiel, indem 8 Mal hintereinander eine Addition von 6 stattfindet. Aber mit einem feinen Unterschied: Zu der 6, die addiert wird, wird jedes Mal eine 1 addiert. Die 6 wird jedes Mal um 1 erh"oht. Das Operationswerk hat zwei Register. Eines f"ur die 8 das andere f"ur die 6. Und zwei addierer. Am Anfang von der 6 zum Beispiel ist ein Multplexer. Vor der 8 auch, da kann am Ende das Ergebnis landen.