-- (C) David Vajda
-- 2025-08-18
-- BCD-zu-7-Segment-Dekoder ...
-- ... 7 y DNF, 7404, 7408, 7432 ...
0 ::= (a, b, c, d, e, f)
1 ::= (b, c)
2 ::= (a, b, g, e, d)
3 ::= (a, b, g, c, d)
4 ::= (f, g, b, c)
5 ::= (a, f, g, c, d)
6 ::= (a, f, g, e, c, d)
7 ::= (a, b, c)
8 ::= (a, b, c, d, e, f, g)
9 ::= (a, b, c, d, f, g)
- sortiert
0 ::= (a, b, c, d, e, f)
1 ::= (b, c)
2 ::= (a, b, d, e, g)
3 ::= (a, b, c, d, g)
4 ::= (b, c, f, g)
5 ::= (a, c, d, f, g)
6 ::= (a, c, d, e, f, g)
7 ::= (a, b, c)
8 ::= (a, b, c, d, e, f, g)
9 ::= (a, b, c, d, f, g)
-- nach sagment
a ::= (0, 2, 3, 5, 6, 7, 8, 9)
b ::= (0, 1, 2, 3, 4, 7, 8, 9)
c ::= (0, 1, 3, 4, 5, 6, 7, 8, 9)
d ::= (0, 2, 3, 5, 6, 8, 9)
e ::= (0, 2, 6, 8)
f ::= (0, 4, 5, 6, 8, 9)
g ::= (2, 3, 4, 5, 6, 8, 9)
0 ::= (*a, *b, c*, *d, *e, *f)
1 ::= (*b, c*)
2 ::= (*a, *b, *d, *e, *g)
3 ::= (*a, *b, c*, *d, *g)
4 ::= (*b, c*, *f, *g)
5 ::= (*a, c*, *d, *f, *g)
6 ::= (*a, c*, *d, *e, *f, *g)
7 ::= (*a, *b, c*)
8 ::= (*a, *b, c*, *d, *e, *f, *g)
9 ::= (*a, *b, c*, *d, *f, *g)
a ::= (0, 2, 3, 5, 6, 7, 8, 9)
b ::= (0, 1, 2, 3, 4, 7, 8, 9)
c ::= (0, 1, 3, 4, 5, 6, 7, 8, 9)
d ::= (0, 2, 3, 5, 6, 8, 9)
e ::= (0, 2, 6, 8)
f ::= (0, 4, 5, 6, 8, 9)
g ::= (2, 3, 4, 5, 6, 8, 9)
x3:x0 g f e d c b a
0 0 0 0 0 0 1 1 1 1 1 1
1 0 0 0 1 0 0 0 0 1 1 0
2 0 0 1 0 1 0 1 1 0 1 1
3 0 0 1 1 1 0 0 1 1 1 1
4 0 1 0 0 1 1 0 1 1 1 0
5 0 1 0 1 1 1 0 1 1 0 1
6 0 1 1 0 1 1 1 1 1 0 1
7 0 1 1 1 0 0 0 1 1 1 1
8 1 0 0 0 1 1 1 1 1 1 1
9 1 0 0 1 1 1 0 1 1 1 1
10 1 0 1 0 x x x x x x x
11 1 0 1 1 x x x x x x x
12 1 1 0 0 x x x x x x x
13 1 1 0 1 x x x x x x x
14 1 1 1 0 x x x x x x x
15 1 1 1 1 x x x x x x x
-- quine mc cluskey, vorher, einzelne segmente
x3:x0 g
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x
x3:x0 f
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x
x3:x0 e
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 0
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x
x3:x0 d
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x
x3:x0 c
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x
x3:x0 b
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x
x3:x0 a
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x
quine ..
x3:x0 g
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
8 1 0 0 0 1
9 1 0 0 1 1
Gruppe 1:
x3:x0 g
2 0 0 1 0 1
4 0 1 0 0 1
8 1 0 0 0 1
Gruppe 2:
6 0 1 1 0 1
3 0 0 1 1 1
5 0 1 0 1 1
9 1 0 0 1 1
2:6 0 - 1 0
4:6 0 1 - 0
--- neu
x3:x0 g
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 1
umgekehrt:
x3:x0 g
0 0 0 0 0 0
1 0 0 0 1 0
7 0 1 1 1 0
x3:x0 f
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
7 0 1 1 1 0
x3:x0 e
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 0
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x
x3:x0 d
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x
x3:x0 c
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x
x3:x0 b
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x
x3:x0 a
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x