-- (C) David Vajda -- 2025-08-18 -- BCD-zu-7-Segment-Dekoder ... -- ... 7 y DNF, 7404, 7408, 7432 ... 0 ::= (a, b, c, d, e, f) 1 ::= (b, c) 2 ::= (a, b, g, e, d) 3 ::= (a, b, g, c, d) 4 ::= (f, g, b, c) 5 ::= (a, f, g, c, d) 6 ::= (a, f, g, e, c, d) 7 ::= (a, b, c) 8 ::= (a, b, c, d, e, f, g) 9 ::= (a, b, c, d, f, g) - sortiert 0 ::= (a, b, c, d, e, f) 1 ::= (b, c) 2 ::= (a, b, d, e, g) 3 ::= (a, b, c, d, g) 4 ::= (b, c, f, g) 5 ::= (a, c, d, f, g) 6 ::= (a, c, d, e, f, g) 7 ::= (a, b, c) 8 ::= (a, b, c, d, e, f, g) 9 ::= (a, b, c, d, f, g) -- nach sagment a ::= (0, 2, 3, 5, 6, 7, 8, 9) b ::= (0, 1, 2, 3, 4, 7, 8, 9) c ::= (0, 1, 3, 4, 5, 6, 7, 8, 9) d ::= (0, 2, 3, 5, 6, 8, 9) e ::= (0, 2, 6, 8) f ::= (0, 4, 5, 6, 8, 9) g ::= (2, 3, 4, 5, 6, 8, 9) 0 ::= (*a, *b, c*, *d, *e, *f) 1 ::= (*b, c*) 2 ::= (*a, *b, *d, *e, *g) 3 ::= (*a, *b, c*, *d, *g) 4 ::= (*b, c*, *f, *g) 5 ::= (*a, c*, *d, *f, *g) 6 ::= (*a, c*, *d, *e, *f, *g) 7 ::= (*a, *b, c*) 8 ::= (*a, *b, c*, *d, *e, *f, *g) 9 ::= (*a, *b, c*, *d, *f, *g) a ::= (0, 2, 3, 5, 6, 7, 8, 9) b ::= (0, 1, 2, 3, 4, 7, 8, 9) c ::= (0, 1, 3, 4, 5, 6, 7, 8, 9) d ::= (0, 2, 3, 5, 6, 8, 9) e ::= (0, 2, 6, 8) f ::= (0, 4, 5, 6, 8, 9) g ::= (2, 3, 4, 5, 6, 8, 9) x3:x0 g f e d c b a 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 0 2 0 0 1 0 1 0 1 1 0 1 1 3 0 0 1 1 1 0 0 1 1 1 1 4 0 1 0 0 1 1 0 1 1 1 0 5 0 1 0 1 1 1 0 1 1 0 1 6 0 1 1 0 1 1 1 1 1 0 1 7 0 1 1 1 0 0 0 1 1 1 1 8 1 0 0 0 1 1 1 1 1 1 1 9 1 0 0 1 1 1 0 1 1 1 1 10 1 0 1 0 x x x x x x x 11 1 0 1 1 x x x x x x x 12 1 1 0 0 x x x x x x x 13 1 1 0 1 x x x x x x x 14 1 1 1 0 x x x x x x x 15 1 1 1 1 x x x x x x x -- quine mc cluskey, vorher, einzelne segmente x3:x0 g 0 0 0 0 0 0 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x x3:x0 f 0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 0 3 0 0 1 1 0 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x x3:x0 e 0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 0 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x x3:x0 d 0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x x3:x0 c 0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x x3:x0 b 0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x x3:x0 a 0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 0 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x quine .. x3:x0 g 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 1 8 1 0 0 0 1 9 1 0 0 1 1 Gruppe 1: x3:x0 g 2 0 0 1 0 1 4 0 1 0 0 1 8 1 0 0 0 1 Gruppe 2: 6 0 1 1 0 1 3 0 0 1 1 1 5 0 1 0 1 1 9 1 0 0 1 1 2:6 0 - 1 0 4:6 0 1 - 0 --- neu x3:x0 g 0 0 0 0 0 0 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 1 11 1 0 1 1 1 12 1 1 0 0 1 13 1 1 0 1 1 14 1 1 1 0 1 15 1 1 1 1 1 umgekehrt: x3:x0 g 0 0 0 0 0 0 1 0 0 0 1 0 7 0 1 1 1 0 x3:x0 f 1 0 0 0 1 0 2 0 0 1 0 0 3 0 0 1 1 0 7 0 1 1 1 0 x3:x0 e 0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 0 8 1 0 0 0 1 9 1 0 0 1 0 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x x3:x0 d 0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x x3:x0 c 0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 0 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x x3:x0 b 0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 0 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x x3:x0 a 0 0 0 0 0 1 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 0 5 0 1 0 1 1 6 0 1 1 0 1 7 0 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 x 11 1 0 1 1 x 12 1 1 0 0 x 13 1 1 0 1 x 14 1 1 1 0 x 15 1 1 1 1 x