Breitensuche

Die Breitensuche geht von Knoten $v_0 = 1$ aus.

\begin{displaymath}
\begin{array}{c}
1. Schritt\\
x=1\\
besucht = \{1\}\\
sch...
...ten = ((1,2),(1,3))\\
nachbarn (2) = \{1,6\}\\ \\
\end{array}\end{displaymath}

\begin{displaymath}
\begin{array}{c}
2.1. Schritt\\
x=2\\
besucht = \{1,2,3,6\...
...(3,4),(3,5))\\ \\
nachbarn (3) = \{1,4,5,6\}\\ \\
\end{array}\end{displaymath}

\begin{displaymath}
\begin{array}{c}
4. Schritt\\
x=6\\
besucht = \{1,2,3,4,5,...
...(3,5),(6,7))\\ \\
nachbarn (5) = \{3,4,6,8\}\\ \\
\end{array}\end{displaymath}

\begin{displaymath}
\begin{array}{c}
6. Schritt\\
x=5\\
besucht = \{1,2,3,4,5,...
...,11))\\ \\
nachbarn (7) = \{6,8,9,11,12,13\}\\ \\
\end{array}\end{displaymath}

\begin{displaymath}
\begin{array}{c}
7.3. Schritt\\
x=7\\
besucht = \{1,2,3,4,...
...\
nachbarn (8) = \{5,7,9,10\}\\ \\
8.1 Schritt\\
\end{array}\end{displaymath}

\begin{displaymath}
\begin{array}{c}
x=8\\
besucht = \{1,2,3,4,5,6,7,8,9,10,11,...
...(7,13),(8,10))\\ \\
nachbarn (12) = \{7,11\}\\ \\
\end{array}\end{displaymath}

\begin{displaymath}
\begin{array}{c}
12. Schritt\\
x=13\\
besucht = \{1,2,3,4,...
...(7,13),(8,10))\\ \\
nachbarn (10) = \{8,11\}\\ \\
\end{array}\end{displaymath}

\includegraphics[width=\textwidth]{.././graph20250428c1.jpg}