-- So, ich habe das jetzt so gemacht, ich muss jetzt aufh"oren und was mir fehlt, ist der CLK
entity mycounter is
port
(
q0, q1, q2, q3: inout bit;
clk: inout bit
);
end;
entity FA is
port
(
a, b: in bit;
c: out bit;
uin: in bit;
uout: out bit
);
end;
entity ripple_carry_adder is
port
(
a0, a1, a2, a3: in bit;
b0, b1, b2, b3: in bit;
c0, c1, c2, c3: out bit;
uin: in bit; -- carry in
uout: out bit -- carry out
);
end;
entity my_rs_latch is
port
(
r, s: in bit;
q1, q2: inout bit
);
end;
entity clock_state_controlled_rs_latch is
port (
s, r: in bit;
c: inout bit;
q1, q2: inout bit
);
end;
entity clock_state_controlled_d_latch is
port (
d: in bit;
c: inout bit;
q1, q2: inout bit
);
end;
entity ms_d_flip_flop is
port (
d: in bit;
q: inout bit;
c: inout bit
);
end;
entity reg is
port
(
d0, d1, d2, d3: in bit;
q0, q1, q2, q3: inout bit;
c: inout bit
);
end;
architecture Behavioral of my_rs_latch is
begin
q1 <= (not r) nor q2;
q2 <= (not s) nor q1;
end Behavioral;
architecture Behavioral of clock_state_controlled_rs_latch is
component my_rs_latch
port
(
r, s: in bit;
q1, q2: inout bit
);
end component;
signal s1, r1: bit;
begin
r1 <= r and c;
s1 <= s and c;
rs: my_rs_latch port map (r=>r1, s=>s1, q1=>q1, q2=>q2);
end Behavioral;
architecture Behavioral of clock_state_controlled_d_latch is
component clock_state_controlled_rs_latch
port
(
r: in bit;
s: in bit;
q1, q2: inout bit;
c: inout bit
);
end component;
signal notd: bit;
begin
notd <= d;
rs: clock_state_controlled_rs_latch port map (r=>d, s=>notd, q1=>q1, q2=>q2, c=>c);
end Behavioral;
architecture Behavioral of ms_d_flip_flop is
component clock_state_controlled_d_latch
port
(
d: in bit;
q1, q2: inout bit;
c: inout bit
);
end component;
signal notc, d1: bit;
begin
dlatch1: clock_state_controlled_d_latch port map (d=>d, q1=>d1, c=>c);
notc <= not c;
dlatch2: clock_state_controlled_d_latch port map (d=>d1, q1=>q, c=>c);
end Behavioral;
architecture Behavioral of reg is
component ms_d_flip_flop is
port
(
d: in bit;
q: inout bit;
c: inout bit
);
end component;
begin
bit1: ms_d_flip_flop port map (d=>d0, q=>q0, c=>c);
bit2: ms_d_flip_flop port map (d=>d1, q=>q1, c=>c);
bit3: ms_d_flip_flop port map (d=>d2, q=>q2, c=>c);
bit4: ms_d_flip_flop port map (d=>d3, q=>q3, c=>c);
end;
architecture Behavioral of FA is
begin
c <= a xor b xor uin;
uout <= (a and b) or ((a or b) and uin);
end;
architecture Behavioral of ripple_carry_adder is
component FA
port
(
a, b: in bit;
c: out bit;
uin: in bit;
uout: out bit
);
end component;
signal u0, u1, u2: bit;
begin
fa1: FA port map (a => a0, b => b0, c => c0, uin => uin, uout => u0);
fa2: FA port map (a => a1, b => b1, c => c1, uin => u0, uout => u1);
fa3: FA port map (a => a2, b => b2, c => c2, uin => u1, uout => u2);
fa4: FA port map (a => a3, b => b3, c => c3, uin => u2, uout => uout);
end;
architecture Behavioral of mycounter is
component ripple_carry_adder
port
(
a0, a1, a2, a3: in bit;
b0, b1, b2, b3: in bit;
c0, c1, c2, c3: out bit;
uin: in bit; -- carry in
uout: out bit -- carry out
);
end component;
component reg
port
(
d0, d1, d2, d3: in bit;
q0, q1, q2, q3: inout bit;
c: inout bit
);
end component;
signal a0, a1, a2, a3 : bit; -- addierer Eingang1
signal b0, b1, b2, b3 : bit; -- addierer Eingang2
signal c0, c1, c2, c3 : bit; -- addierer Ausgang
signal uin, uout: bit;
begin
a0 <= '1';
a1 <= '0';
a2 <= '0';
a3 <= '0';
uin <= '0';
myreg : reg port map (d0 => c0, d1 => c1, d2 => c2, d3 => c3, q0 => b0, q1 => b1, q2 => b2, q3 => b3, c => clk);
rpcadd: ripple_carry_adder port map
(
a0 => a0, a1 => a1, a2 => a2, a3 => a3,
b0 => b0, b1 => b1, b2 => b2, b3 => b3,
c0 => c0, c1 => c1, c2 => c2, c3 => c3,
uin => uin, uout => uout
);
q0 <= c0;
q1 <= c1;
q2 <= c2;
q3 <= c3;
end;