load(interpol);p:[[1,2],[2,3],[4,4],[5,2], [6,5]]; f(x):=lagrange(p); expnd1f1: expand(f(x)); int1f1: integrate(f(x),x,1,6); plot2d(f(x),[x,1,6],[png_file,"/home/david/langrage20250918.png"]); tex (int1f1,"/home/david/langrage20250918.tex"); tex (expnd1f1,"/home/david/langrage20250918.tex");
\documentclass[a4paper]{article} \usepackage{graphicx,german,amsmath,amsfonts} \author{(C) David Vajda} \title{Integral,rechenaufgabe} \begin{document}\maketitle $\displaystyle\int_{1}^{6}f(x)dx = $ $${{395}\over{24}}$$ $${{x^4}\over{5}}-{{77\,x^3}\over{30}}+{{54\,x^2}\over{5}}-{{493\,x }\over{30}}+10$$ \includegraphics[width=\textwidth]{/home/david/langrage20250918.png} $$\left(\begin{array}{ccccc} 1 & 2 & 4 & 5 & 6\\ 2 & 3 & 4 & 2 & 5 \end{array}\right)$$ \end{document}
GAL16V8 RIPPLECARRYCHAINADDER20250918DAVIDVAJDA C0 A4 B4 A3 B3 A2 B2 A1 B1 GND /OE S4 S3 S2 S1 C4 NC NC NC VCC ; S = A XOR B XOR C ; U = A AND B OR (A OR B) AND C S1 = A1 $ B1 $ C0; U1 = A1 & B1 # (A1 # B1) & C0; S2 = A2 $ B2 $ U1; U2 = A2 & B2 # (A2 # B2) & U1; S3 = A3 $ B3 $ U2; U3 = A3 & B3 # (A3 # B3) & U2; S4 = A4 $ B4 $ U3; C4 = A4 & B4 # (A4 # B4) & U3; DESCRIPTION A RIPPLE CARRY CHAIN ADDER 20250918 DAVID VAJDA