32x32 Registersatz
2 Lese und 1 Schreibport
5 Bit Addresse
2\^5 = 32
32 Bit Bus
5 Bit Bus
r-typ
rs-Feld: Quelloperand
rt-Feld: Quelloperand
rd-Feld: Zieloperand
r-typ
i-typ
j-typ
ALU-Op
Opcode:
00 - add
01 - sub
10 - nutze das Func Feld
11 - n/a
Func-Feld:
100 000 - add 4 0
100 010 - sub 4 2
100 100 - and 4 4
100 101 - or 4 5
101 010 - slt - set less than 5 2
ALU-Operation
010 - add
110 - sub
000 - and
001 - or
111 - slt set less than
Einzyklus
Mehrzyklus
Pipelining
Datenkonflikt
Steuerflusskonflikt
Struktur und Ressourcen Konflikt
Echte Datenabh"angigkeit: ED - RAW - Read after Write
Ausgabeabh"angigkeit: AA - WAR - Write after Read
Gegenabh"angigkeit: GA - WAW - Write after Write
Schaltnetz: Elektrische Schaltung, die Spannung als logische Variablen 0 und 1 interpretieren
Schaltnetz: DIN44300/93
Schaltunktion: DIN44300/87
Eingangsvektor
Schaltnetz
Ausgangsvektor
Eingangsvariablen: x0, x1, ..., xn
Eingangsvektor
Schaltalgebra/Boolesche Algebra
Schaltzeichen
Schaltfunktion
Wahrheitstabelle
Funktionsgleichung
Bin"ares Entscheidungsdiagramm
KV-Diagramm
Schaltplan
Gesetze:
Neutrales Element
Inverses Element
Dualit"atsprinzip
De Morgansche Gleichungen oder Regeln
Assoziativ
Distributiv
Kommutativ
Absorbition
Verkn"upfung
Null
Eins
AND (Konjunktion)
OR (Disjunktion)
NAND
NOR
"Aquivalenz
Antivalenz
Komplement
Inverse
Implikation
Transfer
Codierer: Zurordnung eines Zeichen eines Zeichenvorrats zu derjenigen eines anderen Zeichenvorrats
Dekodierer: Codierer mit mehreren Ein und Ausg"angen, die f"ur jede Kombination von Eingangssignalen immer nur
je ein Ausgang ein Signal abgibt
Codierer: DIN44300/118
Dekoderier: DIN44300/121
Verkn"upfungsglieder: DIN40700
Rechenelemente, Komperatoren: DIN40700
PLHS 18P8
Minimierung von Schaltfunktion
Bin"ar"aquivalente
Primimplikantentafel
Quine Mc Cluskey
....
Volladdierer
S = A XOR B XOR C
U = (A AND B) OR (A OR B) AND C
Befehlsz"ahler
Eingang: PC (t)
Ausgang: PC (t+1)
Befehlsdekodierer:
Eingang: OpCode
Ausgang:
MemToReg
MemWrite
Branch
ALU-Src
RegDst
RegWrite
Ausgang: ALU-Op
Funktionsdekodierer:
Eingang:
Func
ALU-Op
Ausgang:
ALU-Operation
Befehlsdekodierer + 32 Bit Befehlswort: Bit 31 bis Bit 26
Func: Bit 5 bis Bit 0
rs-Feld: 26-21
rt-Feld: 20-16
Immidiate Werte - I-Typ Befehle: Bit 0 bis bit 15 (16 Bit) -> Vorzeichenerweiterungseinheit
1.) Befehlsz"ahler PC (t)
2.) Befehlsspeicher
3.) Vorzeichenerweiterungseinheit
4.) 2 Bit Shifter
5.) Addierer
6.) DeMUX
7.) PC (t+1)
1.) Befehsz"ahler PC (t)
2.) Befehlsspeicher
3.) Befehlsz"ahler PC (t+1)
Addierer: +4
PC (t) -> Addierer + 4 -> PC (t+1)
I1: WB
I2: MEM
I3: EX
I4: ID
I5: IF
addi \$t1, \$t2, 2
add \$t4, \$t1, \$t3
subi \$t3, \$t5, 3
subi \$t3, \$t6, 3
Einzyklus
I1: 0, IF, 1, ID, 2, EX, 3 MEM, 4 WB
I2: 5, IF, 6, ID, 7, EX, 8, MEM, 9 WB
Mehryzyklus Pipelining
I1: 0, IF, 1, ID, 2, EX, 3, MEM, 4 WB
I2: 0 - NIX, 1, IF, 2 ID, 3 EX 4 MEM, 5 WB
I1 schreibt in WB
I2 liesst in ID
Interlocking, Stalling
IF ID EX MEM WB
ID ID EX MEM WB
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 1
10 1 0 1 0 0
11 1 0 1 1 0
12 1 1 0 0 0
13 1 1 0 1 0
14 1 1 1 0 1
15 1 1 1 1 1
0 0 0 0 0 1
1 0 0 0 1 1
5 0 1 0 1 1
9 1 0 0 1 1
14 1 1 1 0 1
15 1 1 1 1 1
Gruppe 0:
0 0 0 0 0 1
Gruppe 1:
1 0 0 0 1 1
Gruppe 2:
5 0 1 0 1 1
9 1 0 0 1 1
Gruppe 3:
14 1 1 1 0 1
Gruppe 4:
15 1 1 1 1 1
0:1 0 0 0 -
1:5 0 - 0 1
1:9 - 0 0 1
14:15 1 1 1 -
0 1 5 9 14 15
0:1 * *
1:5 * *
1:9 * *
14:15 * *
y <= (not x3 and not x2 and not x1) or
(not x3 and not x1 and x0) or
(not x2 and not x1 and x0) or
(x3 and x2 and x1);
y <= not (
(x3 or x2 or x1) and
(x3 or x1 or not x0) and
(x3 or x1 or not x0) and
(not x3 or not x2 or not x1)
);
library ieee;
use ieee.std_logic_1164.all;
entity meinschaltnetz0061 is
port
(
x3, x2, x1, x0: in std_logic;
y: out std_logic
);
end;
architecture verhalten of meinschaltnetz0061 is
begin
y <= (not x3 and not x2 and not x1) or
(not x3 and not x1 and x0) or
(not x2 and not x1 and x0) or
(x3 and x2 and x1);
end;
library ieee;
use ieee.std_logic_1164.all;
entity meinschaltnetz0061testbench is
port (
y: out std_logic
);
end;
architecture verhalten of meinschaltnetz0061testbench is
component meinschaltnetz0061
port (
x3, x2, x1, x0: in std_logic;
y: out std_logic
);
end component;
signal x3, x2, x1, x0: std_logic;
begin
sn: meinschaltnetz0061 PORT MAP (x3=>x3, x2=>x2, x1=>x1, x0=>x0, y=>y);
library ieee;
use ieee.std_logic_1164.all;
entity meinschaltnetz0061 is
port
(
x3, x2, x1, x0: in std_logic;
y: out std_logic
);
end;
architecture verhalten of meinschaltnetz0061 is
begin
y <= (not x3 and not x2 and not x1) or
(not x3 and not x1 and x0) or
(not x2 and not x1 and x0) or
(x3 and x2 and x1);
end;
library ieee;
use ieee.std_logic_1164.all;
entity meinschaltnetz0061testbench is
port (
y: out std_logic
);
end;
architecture verhalten of meinschaltnetz0061testbench is
component meinschaltnetz0061
port (
x3, x2, x1, x0: in std_logic;
y: out std_logic
);
end component;
signal x3, x2, x1, x0: std_logic;
begin
sn: meinschaltnetz0061 PORT MAP (x3=>x3, x2=>x2, x1=>x1, x0=>x0, y=>y);
x0 <= '0' after 0 ns, '1' after 10 ns, '0' after 20 ns, '1' after 30 ns, '0' after 40 ns, '1' after 50 ns, '0' after 60 ns, '1' after 70 ns, '0' after 80 ns, '1' after 90 ns, '0' after 100 ns, '1' after 110 ns, '0' after 120 ns, '1' after 130 ns, '0' after 140 ns, '1' after 150 ns;
x1 <= '0' after 0 ns, '0' after 10 ns, '1' after 20 ns, '1' after 30 ns, '0' after 40 ns, '0' after 50 ns, '1' after 60 ns, '1' after 70 ns, '0' after 80 ns, '0' after 90 ns, '1' after 100 ns, '1' after 110 ns, '0' after 120 ns, '0' after 130 ns, '1' after 140 ns, '1' after 150 ns;
x2 <= '0' after 0 ns, '0' after 10 ns, '0' after 20 ns, '0' after 30 ns, '1' after 40 ns, '1' after 50 ns, '1' after 60 ns, '1' after 70 ns, '0' after 80 ns, '0' after 90 ns, '0' after 100 ns, '0' after 110 ns, '1' after 120 ns, '1' after 130 ns, '1' after 140 ns, '1' after 150 ns;
x3 <= '0' after 0 ns, '0' after 10 ns, '0' after 20 ns, '0' after 30 ns, '0' after 40 ns, '0' after 50 ns, '0' after 60 ns, '0' after 70 ns, '1' after 80 ns, '1' after 90 ns, '1' after 100 ns, '1' after 110 ns, '1' after 120 ns, '1' after 130 ns, '1' after 140 ns, '1' after 150 ns;
end;
meinschaltnetz2023_12_31
library ieee;
use ieee.std_logic_1164.all;
entity my_switching_network_happy_new_year is
port
(
x3, x2, x1, x0: in std_logic;
y: out std_logic
);
end;
architecture behaviour of my_switching_network_happy_new_year is
begin
y <= (not x3 and not x2 and not x1) or
(not x3 and not x1 and x0) or
(not x2 and not x1 and x0) or
(x3 and x2 and x1);
end;
library ieee;
use ieee.std_logic_1164.all;
entity my_switching_network_happy_new_year_testbench is
port (
y: out std_logic
);
end;
architecture behaviour of my_switching_network_happy_new_year_testbench is
component my_switching_network_happy_new_year
port (
x3, x2, x1, x0: in std_logic;
y: out std_logic
);
end component;
signal x3, x2, x1, x0: std_logic;
begin
sn: my_switching_network_happy_new_year PORT MAP (x3=>x3, x2=>x2, x1=>x1, x0=>x0, y=>y);
x0 <= '0' after 0 ns, '1' after 10 ns, '0' after 20 ns, '1' after 30 ns, '0' after 40 ns, '1' after 50 ns, '0' after 60 ns, '1' after 70 ns, '0' after 80 ns, '1' after 90 ns, '0' after 100 ns, '1' after 110 ns, '0' after 120 ns, '1' after 130 ns, '0' after 140 ns, '1' after 150 ns;
x1 <= '0' after 0 ns, '0' after 10 ns, '1' after 20 ns, '1' after 30 ns, '0' after 40 ns, '0' after 50 ns, '1' after 60 ns, '1' after 70 ns, '0' after 80 ns, '0' after 90 ns, '1' after 100 ns, '1' after 110 ns, '0' after 120 ns, '0' after 130 ns, '1' after 140 ns, '1' after 150 ns;
x2 <= '0' after 0 ns, '0' after 10 ns, '0' after 20 ns, '0' after 30 ns, '1' after 40 ns, '1' after 50 ns, '1' after 60 ns, '1' after 70 ns, '0' after 80 ns, '0' after 90 ns, '0' after 100 ns, '0' after 110 ns, '1' after 120 ns, '1' after 130 ns, '1' after 140 ns, '1' after 150 ns;
x3 <= '0' after 0 ns, '0' after 10 ns, '0' after 20 ns, '0' after 30 ns, '0' after 40 ns, '0' after 50 ns, '0' after 60 ns, '0' after 70 ns, '1' after 80 ns, '1' after 90 ns, '1' after 100 ns, '1' after 110 ns, '1' after 120 ns, '1' after 130 ns, '1' after 140 ns, '1' after 150 ns;
end;